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Ultra-relativistic heavy ion collisions, such as those at the Large Hadron Collider (LHC) and
Relativistic Heavy-Ion Collider (RHIC) have unlocked the study of a hot dense state of matter
known as the Quark-Gluon Plasma (QGP), whose dynamics can be accessed by examining the
substructure of jets — collimated sprays of particles produced in the collision.

In this context, we introduced the τ jet reclustering algorithm, defined such that its distance
measure coincides with the inverse splitting formation time τ−1

form in the soft collinear limit. By
clustering jets in this way, the τ algorithm is shown to accurately estimate τform for event samples
in Monte Carlo event generators. Further, jet populations can be selected according to their medium
modifications.

These results motivate the need for a parton shower ordered according to splitting formation time,
a prescription thus far absent from jet studies. To this end, the QCD amplitude for double gluon
emission is examined, so that τform can be computed from an analytical expression, and factorisation
into single gluon emissions can be verified.

Lastly, three different prescriptions for parton showers in the double logarithmic approximation
(DLA) were implemented, corresponding to ordering parton emissions in virtuality, transverse mo-
mentum, or splitting angle. The Lund plane distributions for parton cascades in each prescription
were obtained, their trajectories over the phase space were investigated, and the τform values were
extracted. The variations between all three prescriptions may prove crucial for QGP studies, high-
lighting the need for theoretical control beyond the DLA.

I. INTRODUCTION

A. Quantum Chromodynamics

The dynamics of quarks and gluons are described by an
SU(3) gauge theory known as Quantum Chromodynam-
ics (QCD), and encoded in the following Lagrangian,

ℒclassical = ψ(i /D −M)ψ − 1

4
F a
µνF

a,µν ,

Dµ = ∂µ − i gTaAa
µ ,

F a
µν = ∂µA

a
ν − ∂νA

a
µ + g fabcAb

µA
c
ν .

(1)

Here, the fields ψ, ψ, and Aa
µ represent the quark,

antiquark, and gluon degrees of freedom respectively.
Dµ represents the covariant derivative, defined from the
SU(3) generators Ta, and F a

µν is the field strength tensor,

requiring the SU(3) structure constants fabc. Overviews
of quantum chromodynamics can be found in [1, 2].

Although the quark, antiquark, and gluon fields de-
scribed above are appropriate degrees of freedom at high
energy scales, the observed particles of the theory are
hadrons, which become the appropriate object at low
energy scales. This separation between short and long
range scales gives rise to the problem of relating calcula-
tions in perturbation theory with the non-perturbative
objects in the initial and final states of any given exper-
iment.

B. Factorisation of Hard Processes and Parton
Evolution

High-energy interactions between hadrons can be fac-
torised into long range, non-perturbative contributions
containing all information about the hadron structure,
and a short range, perturbative contribution encoding
the interaction between constituent partons.

As an example, the cross-section for a proton-proton
(pp) scattering with at least one final state hadron can
be written as

dσp+p′→h+Y =
∑
a,b,c

∫
xa,xb

fa/p(xa, µ
2)fb/p′(xb, µ

2)×

× dσa+b→c(xa, xb, µ
2)×

×Dh/c(xh, µ
2) .

(2)

The first two objects are parton distribution functions
(PDFs), fi/p(xi, µ

2), which encode the probability of

finding a parton i inside hadron p, at a given resolution
scale µ2 and with a momentum fraction of the incom-
ing hadron xi. Next, the hard scattering cross-section
dσa+b→c encodes the probability of the scattering be-
tween partons a and b to produce parton c (along with
any other products). Finally, the fragmentation function
(FF) Dh/c(xh, µ

2) represents the probability of hadron

h being produced with a momentum fraction xh from a
parton species c, at some scale µ2.

Worth noting is that of these objects, only the hard
scattering cross-section is calculable in perturbation the-
ory. As such, the PDFs and FFs can only be determined
from experiments, see [3, 4].

Despite being non-perturbative, the fragmentation
functions and parton distributions evolve perturbatively
with the resolution scale µ2. In fact, a change in the frag-
mentation functions due to a decrease resolution scale
µ2 → µ2 + δµ2 is understood as due to partons leaving
or entering the [µ2, µ2 + δµ2] region.
This gives rise to the DGLAP equations,

dDa(x, µ
2)

d ln(µ2)
=
α(µ2)

2π

∑
i

∫ 1

x

dz
Di(x/z)

z
Pa←i(z) , (3)

describing the change in fragmentation functions with
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the hardness scale µ2. The Pa←i(z) functions are known
as the splitting kernels, and encode the probability for
a parton of species i to produce a parton of species a,
carrying some fraction z of its momentum.

This description allows for a probabilistic sampling
of a parton cascade, as long as one can compute the
probability distribution for the splitting scales. This is
given by the Sudakov form factor,

∆a(Q
2
0, Q

2) =

= exp

[
−
∫ Q2

Q2
0

dµ2

µ2

α(µ2)

2π

∫ zmax

zmin

dz
∑
i

P̂i←a(z)

]
,

(4)

defined by the probability for no emission by a parton
of species a between the scales [Q2

0, Q
2].

By sampling the Sudakov form factor, as well as the
splitting kernels, one is able to correctly generate the
emission scales µ2

n and momentum fractions zn corre-
sponding to a parton cascade and, from momentum con-
servation, extract the four-momenta of all participating
particles. Notably, the integrand in the Sudakov factor
depends on the phase space measure d lnµ2 dz, invari-
ant under some change of variable to a different scale
ρ2 = µ2 f(z), since

d ln ρ2dz = det

[
1 f ′(z)/f(z)
0 1

]
d lnµ2dz =

= d lnµ2dz.

(5)

Thus, within the leading logarithmic approximation,
one may take the ordering variable to by a proxy for
a kinematic variable of choice, such as the transverse
momentum or the splitting angle of the splitting, with-
out compromising the emission probabilities. However,
these prescriptions differ in the form of the available
phase-space for the emissions.

One such ordering variable is the splitting angle, re-
flecting the angular ordering property of QCD emissions,
as outlined in [1, p.182], wherein splitting angles are
strictly decreasing along a final state parton cascade.
This can be understood as a coherence effect: for angles
larger than the antenna’s opening, its constituents can-
not be resolved by the gluon as individual emitters and
therefore act as colour singlet, which does not radiate.

C. Jet Reconstruction Algorithms

A complete experimental treatment of multiple QCD
emissions requires a systematic procedure to extract in-
formation from the final state particles reaching the de-
tectors, formed by the hadronisation of the final partons.
To this end, hadrons are reconstructed as a jet — a col-
limated spray of final state particles.

This is achieved by sequential reconstruction algo-
rithms such as those of the generalised-kT family, which
clusters pairs of particles with minimal distance dij , un-
til all distances exceed the beam distance diB , as defined

below,

dij
def
= min(p2pTi, p

2p
Tj)

(
∆Rij

R

)2

,

diB
def
= p2pTi ,

∆Rij
def
=

√
(φi − φj)

2 + (yi − yj)
2 .

(6)

Here, ∆Rij represents the geometric distance in the
azimuthal angle — rapidity plane, and p regulates the
energy dependence of the clustering distance dij .

Setting p = −1 defines the anti-kT algorithm, which
prioritises splittings with at least one high-energy parti-
cle, and is therefore much more likely to identify prod-
ucts of the hard-scattering. This decreased sensitivity to
the underlying event along with the fact it produces cir-
cular jets means that this algorithm is particularly suited
for experimental use. However, due to its tendency to
include hard partons in every splitting, the substructure
of anti-kT ordered jets does not respect the orderings
suggested by perturbative QCD calculations.

On the other hand, p = 0 defines the Cambridge-
Aachen (C/A) algorithm which clusters particles accord-
ing to their angular distance, yielding jets ordered such
that splittings are strictly decreasing in angle. Despite
respecting the angular ordering prescription of QCD, its
lack of a pT dependence renders it overly sensitive to
wide and soft emissions, like those constituting the un-
derlying event.

D. The Quark-Gluon Plasma and Heavy Ions

In ultra-relativistic heavy-ion collisions, such as those
studied at RHIC in the Brookhaven National Labora-
tory, and at the LHC in CERN, a hot dense state of
QCD matter known as the quark-gluon plasma (QGP)
is formed. Among its many interesting properties, the
QGP exhibits deconfinement of the parton degrees of
freedom, due to the asymptotic freedom exhibited by
QCD at high energies.

Owing to its extreme temperature and density, the
QGP expands rapidly, with a short lifetime, in the yoc-
tosecond scale (10−24 s), and therefore can only be stud-
ied indirectly, with recourse to probes defined from prod-
ucts of the hadron collision. Of these, the most rele-
vant to this work are jets, due to containing information
about QCD splittings at scales ranging from the hard
scattering (∼ 1TeV at the LHC) to the hadronisation
scale (∼ 102MeV). Thus, the jet modifications due to
medium interactions, generally denoted by jet quench-
ing, encode the information of the medium evolution
across all these energy scales, which can be translated
into time scales [5].

In this work, we aim at a more precise determination
of the characteristic timescales for parton emissions, in
order to eventually unlock precision QGP studies.
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II. JET RECONSTRUCTION AND HEAVY ION
STUDIES

A. Formation Time and Jet Reconstruction

In cases where parton cascades evolve alongside a de-
confined medium, as in heavy ion collisions, the angular
ordering prescription for parton showers no longer suf-
fices, and the phase-space for possible emissions opens
up to anti-angular ordered showers [6, 7]. Therefore, a
reclustering algorithm using a purely geometric distance,
such as Cambridge-Aachen, may not provide a suitable
jet definition for jet quenching studies.

As the dynamics of all medium properties depend on
the medium evolution, the QGP provides a time direc-
tion for the subsequent evolution of parton cascades.
As such, in this section, consisting of work published in
[8], we introduce a jet reclustering algorithm ordered in
splitting formation time, and explore an application to
heavy-ion studies.

To this end, we shall consider the splitting of an off-
shell parton with four-momentum p into two daughters
with four-momenta p1 and p2, as depicted in figure 1.

(�, p)
p

p1

p2

(�1, p1)

(�2, p2)

\12

FIG. 1: Kinematics of a 1 → 2 parton splitting. The angle
between the daughters’ three-momenta is denoted θ12.

In the mother’s rest frame, and by dimensional anal-
ysis, the formation time of such a splitting is inversely
proportional to the only mass scale, given by the off-
shell mass m2 = p2. By applying a boost into an the
laboratory frame, one finds

τform =
E

m
· 1

m
. (7)

This estimation, based on dimensional analysis [2],
provides our definition of the timescale of a parton split-
ting for the rest of this section. By defining z as the
energy fraction of the softest daughter and the daughter
masses as m1 and m2 respectively, the formation time
is

τform =
E

m2
1 +m2

2 + 2 p1 · p2

∼ E

2E1E2 (1− cos θ12)

∼ 1

2E z(1− z) (1− cos θ12)

∼ 1

E z θ212
,

(8)

noting the assumption of massless daughters in the sec-
ond line, followed by the soft (z ≪ 1) and collinear

(θ12 ≪ 1) limit in the third line.

In collider experiments, the momentum component
transverse to the beamline (pT) is usually taken as a
proxy for the energy, and in central regions of the de-
tector the opening angle can be computed as the dis-
tance in the y − φ (rapidity – azimuth) plane, given

by ∆R2
ij

def
= (φi − φj)

2 + (yi − yj)
2. Therefore, us-

ing the collider kinematics for the daughter particles
(pT1,2, φ1,2, y1,2), we can define a proxy for the formation
time,

τ−1form ∼ min(pT1, pT2) (∆R12)
2 ∝ d12 , (9)

where d12 represents the generalised-kT distance be-
tween the daughters, with the algorithm exponent p =
1/2. Thus, our estimate suggests that this algorithm,
hereon denoted the τ algorithm, clusters jets ordered in
splitting formation time, in the soft collinear limit.

B. Methodology

In order to evaluate the performance of the
generalised-kT algorithms we will use three event gen-
erators with different choices of ordering variable.
PYTHIA8 [9] (v8.2.35, tune 4C), uses transverse mo-
mentum as an ordering variable, and will be used as
a reference for vacuum propagated parton cascades.
JEWEL (unofficial version based on v.2.2.0) [10], which
uses the virtual mass as the ordering variable, will be
used as a vacuum reference for jet quenching. Finally,
the medium model implemented in JEWEL, which uses
a veto in formation time, is used for jet quenching stud-
ies.

The event generators were set to produce dijet events
at a centre-of-mass energy

√
sNN = 5.02TeV. The

medium effects are implemented in JEWEL through a
toy model of an ideal quark-gluon gas, expanding ac-
cording to a Bjorken model with Tinit = 0.44GeV and
τinit = 0.4 fm/c.

C. Reclustering Scheme

To obtain the jets from the final state hadrons, we
start by reconstructing jets using the anti-kT algorithm
with a jet radius of R = 0.5. After identifying the
leading (highest momentum) jet in the transverse mo-
mentum region pT > pTmin = 300GeV and a pseudo-
rapidity in |ηjet| < 1.0, its constituent particles are
reclustered using a generalised-kT algorithm for some
p values and a jet radius of R = 1.0. These steps are
performed within FastJet v3.3.0 [11].

As previously mentioned, the τ algorithm’s clustering
measure only coincides with the splitting formation time
in the soft and collinear limit, which means not all jets
are completely ordered in τform. Thus, when extracting
the formation time of a given splitting, we shall resort
to the formula given in the third line of (8) as the work-
ing definition of the splitting formation time, for the
remainder of this study.
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D. Performance of the τ Algorithm

To evaluate the performance of the τ algorithm, we
start by considering two proxies for the first splitting
formation time: first τUncluster

form , as computed from the
substructure properties of reclustered jets, and second,
τPartonShower
form , as calculated from the kinematic values
read from the Monte Carlo event generator, using the
third line of (8). The correlation between these variables
is plotted in figure 2.
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FIG. 2: Correlation of τform between the first parton shower
emission and the first unclustering step for different

generalised-kT algorithms.

Both in the case of p = 0 (C/A) and p = 1/2 (τ), one
can see two main features; the diagonal elements, repre-
senting true correlations between the reclustering algo-
rithm and the Monte Carlo truth, as well as the vertical
band, representing a mismatch between the jet reclus-
tering algorithm and the parton shower values, which
can be explained by large angle emissions falling outside
the jet cone, leading to uncorrelated emissions.

Although this mismatch can be reduced by increasing
the jet radius, this would also increase sensitivity to the

underlying event in the case of heavy ion collisions.
Another observation is that the correlation between

the reclustered jet and the Monte Carlo history is more
pronounced for the τ algorithm. However, given the
sensitivity of the C/A algorithm to soft large angle split-
tings, it is only expected to reproduce the DGLAP ker-
nels when some grooming technique is used. To re-
duce this sensitivity, we introduce a SoftDrop procedure.
Thus, we eliminate all splittings of the leading branch
that do not verify the condition

zg
def
=

min(pT1, pT2)

pT1 + pT2

> zcut

(∆R12

R

)β

. (10)

Figure 3 shows the correlation between the τform vari-
ables when the SoftDrop condition with zcut = 0.1 and
β = 0 is enforced. The vertical band at τPartonShower

form ∼ 0
is greatly reduced for both algorithms, as the relatively
soft, large angle emissions falling outside the jet cone
have been discarded from both the parton shower and
jet histories.

After the application of the jet grooming procedure,
the correlation factors have increased from 0.26 to 0.65
for C/A reclustering, and from 0.38 to 0.66 for τ reclus-
tering. As such, SoftDrop grooming is recommended for
any jet reconstruction algorithm.

Next, to study how this correlation evolves with the
algorithm exponent p, we consider the distribution

∆τform
def
= τPartonShower

form − τUncluster
form , (11)

of the difference between the proxies for formation time.
Thus, a well performing reclustering algorithm is associ-
ated with ∆τform distribution which is both narrow and
centred at zero. An example of this distribution can be
seen in figure 4, pertaining to C/A reclustered jets.

Due to the skewness and steepness of the ∆τform dis-
tributions, we characterise them by their central value,
defined as the median Q2, and their width, quantified
by the first and third quartiles Q1 and Q3. This ap-
proach allows for quantifying not only the centre and
width of the distributions, but also their asymmetry, an
important quantity for non-Gaussian distributions.

For PYTHIA8 generated showers, these values were
computed for various reclustering algorithm exponents
(p = 0.0; 0.25; 0.5; 0.75; 1.0) and plotted in figure 5. One
observes that, when focusing on the first emission (in
orange), all considered algorithms yield ∆τform distribu-
tions centred on zero, with central values of the p ex-
ponent producing narrow and symmetric distributions.
However, when considering subsequent emissions, the in-

terquartile range (IQR
def
= Q3−Q1) becomes significant1,

and exponents of p ≃ 0.5 are required to obtain narrow
and symmetric distributions.

To evaluate the robustness of these results, we re-
peated this analysis for JEWEL generated showers with-
out medium effects, which yielded similar results.

1This can be understood by noting that ∆τform increases with
τform, causing the IQR to be larger for the second splitting.



D Performance of the τ Algorithm 5

4−10

3−
10

2−10

C/A: Unclustering vs Parton Shower, 1st Emission

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

 (fm/c)Parton Shower
form

τ

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 (
fm

/c
)

U
n

c
lu

s
te

r
fo

rm
τ 

 = 5.02 TeV
NN

sPYTHIA8, 

 > 300 GeV
T

 R = 0.5, p
T

Antik

 = 0β = 0.1, 
cut

SoftDrop: z

C/A: Unclustering vs Parton Shower, 1st Emission

(a) Reclustering with C/A algorithm.

4−10

3−
10

2−10

: Unclustering vs Parton Shower, 1st Emissionτ

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

 (fm/c)Parton Shower
form

τ

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 (
fm

/c
)

U
n

c
lu

s
te

r
fo

rm
τ 

 = 5.02 TeV
NN

sPYTHIA8, 

 > 300 GeV
T

 R = 0.5, p
T

Antik

 = 0β = 0.1, 
cut

SoftDrop: z

: Unclustering vs Parton Shower, 1st Emissionτ

(b) Reclustering with τ algorithm.

FIG. 3: Correlation of τform between the first parton shower
emission and the first unclustering step for different

generalised-kT algorithms with SoftDrop grooming (zcut = 0.1
and β = 0) in PYTHIA8.

The values of the median and IQR for the JEWEL
samples are similar to those obtained for PYTHIA8
showers, where a value of p = 0.5 again yields a centred,
symmetric, and narrow distribution. The main differ-
ences are found for the second emission, where larger
values of p seem compatible with a centred distribution.

Despite the difference in details, central values of the
algorithm exponent p appear to yield a better correlation
between parton shower and jet histories. In particular,
the τ algorithm (p = 0.5) shows the best performance
with respect to the first emission, especially in providing
a symmetric ∆τform distribution, which is crucial for an
unbiased estimation of the formation time.

A similar analysis was performed for medium modi-
fied showers, where the algorithms show similar trends.
Once again jet grooming proves invaluable in improv-
ing the correlation between the unclustering and parton
shower formation times.

The ∆τform distributions are wider than for vacuum-
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FIG. 4: ∆τform distribution for the first emission/unclustering
step with the C/A jet algorithm (p = 0) and zcut = 0.1.
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FIG. 5: Median of the ∆τform distribution obtained for different
p values of the algorithms for the first (orange), second (green)
or all emissions along the primary branch (purple) in PYHTIA 8

samples. The asymmetric error bars correspond to +Q3 and
−Q1 quartiles. The right panel shows a zoom of Q2 alone.

like showers, due to the deterioration of the τform resolu-
tion caused by medium interactions, and to the delaying
the first splitting formation time (itself correlated with
wider ∆τform distributions). Despite this, central values
of the algorithm exponent p ∼ 0.5 continue to minimise
the median and IQR of the ∆τform distributions for the
medium-modified shower samples, both with and with-
out medium recoils.

E. Jet Quenching Studies

We now turn to an application in heavy ion stud-
ies, aiming at a determination of the characteristic
timescales for medium evolution. To this end, we start
by studying the relevance of the formation time variable
in heavy-ion collisions, by plotting the distributions of
τform for JEWEL (pp) and JEWEL (PbPb) showers in
figure 6. The clear increase of the average formation
time for the first splitting can be explained by medium-
induced effects.

For particles participating in the first jet splitting,
both elastic and inelastic energy loss are negligible. In
the former case, because the incoming parton is highly
energetic, and in the latter case because any medium-
induced splitting would have a formation time much
shorter than the vacuum-like splitting (and thus would
be discarded by the JEWEL veto procedure).
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FIG. 6: τform distribution for the first parton shower emission
obtained from JEWEL in pp (blue) and PbPb (green) when
using zcut = 0.1. The distribution is shown as a function of

log10(τform), and the inset shows the distribution on linear-log
scale.

However, jet modification effects also include jet col-
limation, previously found in other observables [12, 13],
wherein the surviving jets in PbPb collisions are biased
towards a harder fragmentation patters, i.e. hadronise
into more energetic final state particles. This increase
in transverse momentum biases the jet distributions to-
wards larger formation times (cf. the τform definition in
equation 8). This effect is dominant for the first emis-
sion, and explains the shift in the log10(τform) distribu-
tion seen in figure 6.

We proceed by computing the nuclear modification
factors for the reclustered jets, defined as the ratio be-
tween jet yields in medium and in vacuum, which quan-
tifies the jet quenching effects of the medium. This is
given by

RAA(pT) =
Npp

evt

NAA
evt

dNAA
jet /dpT

dNpp
jet/dpT

. (12)

We compute the RAA for the leading jets reclustered
from JEWEL generated showers, while extending the
kinematic region to include lower transverse momentum
jets (pT > 100GeV). Using both the Cambridge-Aachen
and τ algorithm to recluster the leading jets, we define
two different jet populations, according to their forma-
tion time; early jets with τform < 1 fm/c, and late jets
with τform > 3 fm/c. The RAA(pT) spectrum of both
populations is displayed in figure 7. For reference, the
nuclear modification factors obtained from Monte Carlo
values have been included (in green), as well as the in-
clusive spectrum (in black).

By comparing the RAA spectrum of the various pop-
ulations, we note a clear difference between the jet sup-
pression of the early population and that of the full sam-
ple. For these jets, C/A and τ results coincide, and are
consistent with the interpretation that jets with a frag-
mentation starting shortly after the hard scattering de-
velop alongside a high density medium, and are therefore
strongly modified.

On the other hand, when considering the late popula-
tion the τ algorithm yields an RAA compatible with 1,
unlike the C/A algorithm. As discussed above, jets in
heavy-ion collisions are biased towards harder fragmen-
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FIG. 7: JEWEL RAA of leading jets. The jets reclustered
withτ (C/A) algorithm are shown in purple (orange) when

selecting the first groomed unclustering step with τform > 3 fm/c
(τform < 1 fm/c) in solid (dashed) lines. We add the results when
reading the τform from the Monte Carlo parton shower in green,

and the inclusive spectrum in solid black.

tation patterns, and are thus less susceptible to energy
loss. We can therefore approximate the late jets as a sin-
gle effective colour charge with high momentum for the
first∼ 3 fm of its evolution, during which is suffers nearly
no energy loss. When this object splits, the medium has
diluted considerably (energy density of ϵ ∼ 5GeV/fm3

for the present model and settings), which means that
the jet evolves under vacuum-like conditions.

Ultimately, the τ algorithm results are closer to the
Monte Carlo values in the previously studied range
(pT > 300GeV), which is consistent with the results
of the previous sections.

In turn, experimental classification to jet quenching
effects at varied and increasingly differential timescales
may prove invaluable as tools for precision jet studies,
possibly unlocking a tomographic analysis of the QGP
at LHC energies.

In this context, the remainder of this work will consist
of the first steps towards developing a parton shower
ordered in splitting formation time, a choice of ordering
variable thus far absent from our studies. To this end,
we will begin by examining the emission of two gluons
by a high-energy quark in vacuum, placing particular
emphasis on the characteristic emission timescales.

III. FACTORISATION OF A DOUBLE GLUON
EMISSION

A. Tree Level Amplitude and Eikonal Factor

In Quantum Chromodynamics, in light cone gauge
[14, p.1089], the emission of two gluons by an incom-
ing quark has three tree level contributions, listed in
figure 8.

Each of the contributions to the process amplitude
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(a) Diagram I — k1 couples to the 1st vertex.
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(b) Diagram II — k1 couples to the 2nd vertex.

p i p f

q3

k1

k2Mh

!
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(c) Diagram III — k1 and k2 couple to a virtual
gluon.

FIG. 8: Contributions for the emission of two gluons by a
quark, at tree level, in QCD.

can be written as

M =

∫
pi,q

(2π)4δ(4)(q + kA − pi)×

× (2π)4δ(4)(kB + kC − q)×

× i

(p2i −m2
i + i ε)

· i

(q2 −m2
q + i ε)

×

×T (pi, q) ·Mh(pi) ,

(13)

where Mh(pi) denotes the hard scattering amplitude, and
contains all the information pertaining to the dynam-
ics of the hard process. On the other hand, the in-
ternal four-momentum q as well as the emission part
T (pi, q) depend on the topology of the successive emis-
sions. The set of four-momenta {kA, kB , kC} represent
the final state particles, in the arrangement correspond-
ing to a particular diagram.

The emission parts corresponding to each diagram are
written

T1 = εµ(k1, λ1)
∗εν(k2, λ2)

∗ū(pf , sf )×

× Ta Tb (i g γν) /q1 (i g γ
µ) /pi ,

T2 = εµ(k1, λ1)
∗εν(k2, λ2)

∗ū(pf , sf )×

× TbTa(i g γµ) /q2 (i g γ
ν) /pi ,

T3 = εµ(k1, λ1)
∗εν(k2, λ2)

∗ū(pf , sf )×
× fabcTc(igγσ)Sσρ(q3) gΓ

ρµν(q3,−k1,−k2) /pi ,

(14)

in accordance with the QCD Feynman rules in light cone
gauge.

After performing a Fourier transform in the p− mo-

mentum components and integrating over the propaga-
tor poles, the amplitude contributions are shown to have
the form

M =

∫
x+
0 <x+

1 <x+
2

e
i x+

0

|p⊥i|
2

2 p+i

2 p+i · 2 q+
×

× e
i

x+
1

tf(pi → q, kA) e
i

x+
2

tf(q → kB , kC) ×
× T on−shell(pi, q) ·Mh(x

+
0 ) ,

(15)

where x+1,2 are the light cone times associated with each
emission. These times present with a characteristic
phase, identified as

tf(p→p1, p2)
−1 =

p+

2
z(1− z)

∣∣∣∣p⊥1p+1
− p⊥2

p+2

∣∣∣∣2 , (16)

with z as the light cone momentum fraction of the
daughters, and p⊥i their transverse momentum.

In the context of the diagonal contributions to |M|2,
by writing the M∗ integrations over x̄1,2, we find

MM∗ ∝
∫
x+
1 ,x̄+

1

exp

{
i

(x+1 − x̄+1 )

tf(pi → kA, q)

}
×

×
∫
x+
2 ,x̄+

2

exp

{
i

(x+2 − x̄+2 )

tf(q → kB , kC)

}
.

(17)

We identify the differences x+j − x̄+j as the uncertain-
ties in the light cone times for both splittings, and note
how they oscillate with characteristic timescales given
by the phases tf(p → p1, p2). These are therefore iden-
tified as the splitting formation times, and in the soft
limit for gluon emission reduce to

t−1f,j ∝ k+j θ
2
j = p+zj θ

2
j , (18)

for the formation time of gluon j. Further, the angular
ordering prescriptions can be rewritten as an ordering in
formation times,

θ1 ≫ θ2 ⇐⇒ t−1f1 ≫ t−1f2 , (19)

valid in the soft regime, outside of which finite energy
correction become important, as seen in the previous
section.

B. Suppression of the Interference Terms

Because this interpretation for the splitting formation
times is only valid in the context of the diagonal con-
tributions to |M|2, we must compute all contributions
to verify that the interference terms do not show any
enhancement. This is visible in the colour suppression
of the interference between the first two diagrams.

From (14), we can read the colour factors correspond-
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ing to each diagram

Gab
1 = (−1) Ta Tb ,

Gab
2 = (−1) Tb Ta ,

Gab
3 = i fabc Tc ,

(20)

Define the colour factors as the sum over adjoint and
fundamental indices, divided by the number of possible
colours of the initial quark,

KXY
def
=

1

N

∑
i,j

∑
a,b

(G∗Y )
ab
ij (GX)abij . (21)

Using the SU(N) group algebra and the definitions

CA = N and CF =
N2−1
2N , these are written

K11 = C2
F = 𝒪(N2) ,

K22 = C2
F = 𝒪(N2) ,

K33 = CFCA = 𝒪(N2)

K12 = K21 = − CF

2N
= 𝒪(1) ,

K13 = K31 = −N CF

2
= 𝒪(N2) ,

K23 = K32 = +
N CF

2
= 𝒪(N2) .

(22)

showing the colour suppression of the interference term
K12. Despite not being colour suppressed, the other in-
terference terms can be included in the diagonal contri-
butions.
When looking at the Dirac structure, no enhancement

of the interference terms is found, and the diagonal terms
show the factorisation of the splitting kernels for each
emission, in the soft limit for the gluons. With this
result in hand, we move towards considering multiple
gluon radiation by a quark, in the context of a parton
shower.

IV. ORDERING VARIABLES FOR PARTON
SHOWERS

Next, we aim to study the dynamics of parton shower
cascades by implementing parton showers according to
the double logarithm approximation (DLA). For simplic-
ity, we focus on multiple gluon emissions by a single
quark, as ordered according to their virtual mass, trans-
verse momentum, and angle.

A. The Double Logarithm Approximation

By evaluating the QCD coupling constant at some
fixed scale α(µ2) −→ α(m2

Z), and approximating the
DGLAP splitting kernels as∑

i

P̂i←q(z) ≃
2CF

z
,

∑
i

P̂i←g(z) ≃
2CA

z
,

(23)

the integrand of the Sudakov form factor as given by (4)
becomes doubly logarithmic. This captures the basic
features of parton cascades in the soft collinear limit,
and can be used for a probabilistic sampling of parton
emissions.

This is done by inversion sampling, wherein the range
[0, 1] of the Sudakov factor is sampled uniformly, by set-
ting it equal to a random number,

∆a(Q
2
max, Q

2) = R , (24)

yielding a condition which can then be inverted, sam-
pling the scale of the next emission Q2 correctly. The
same can be done to sample the fractions z, taken as
the light cone fractions of the splittings, by using the
cumulative distribution of the splitting kernels,

F (zn)
def
=

∫ zn
zmin

du/u∫ 1−zmin

zmin
du/u

=
ln(zn/zmin)

ln(1/zmin − 1)
, (25)

where the kinematic limit zmin is determined from mo-
mentum conservation.

In line with our aim to study the differences between
various ordering prescriptions, we adopt the approach
of choosing some ordering variable µ2

n = p2nf(zn), where
p2n is the virtual mass of the mother. In this thesis, we
focus on the following choices for µ2

n

p2n , the mother’s virtual mass.

p̃2
⊥n

def
= zn(1− zn) p

2
n , the transverse momentum.

ζn
def
=

p2n
zn(1− zn)

, the splitting angle.

(26)

Our implementation clearly differs between ordering
prescriptions, because the same (µ2

n, zn) pair would pro-
duce different virtual masses, therefore requiring differ-
ent kinematic limits on the light cone fraction, denoted
by zmin and zmax.

After obtaining the kinematic limits for each ordering
prescription and evaluating the double integral in the
Sudakov form factor given by (4), we can proceed with
sampling the parton emissions for all prescriptions.

For the three ordering prescriptions under study, con-
dition (24) is

p2n
Q2

had

= exp

{
+

√
ln2

p2n,max

Q2
had

+
1

ᾱ
lnR∆

}
,

p̃2
⊥n

p2n,max

= exp

{
−

√
ln2

p̃2
⊥n−1
p2n,max

− 1

ᾱ
lnR∆

}
,

ζn
Q2

had

= exp

{
+

√
ln2

ζn−1
Q2

had

+
2

ᾱ
lnR∆

}
,

(27)

for quark initiated splittings2, where p2n,max
def
= p2n−1zn−1.

2The first splitting requires slightly different limits, as the up-
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To sample the light cone fractions, an equivalent
method is employed, using the cumulative distribution
defined in (25). This has the form F (zn) = Rz, written
as

zn = zmin(µ
2
n) ·

( 1

zmin(µ
2
n)

− 1
)Rz

, (28)

where zmin(µ
2
n) corresponds to

zmin =
Q2

had

p2n
, for p2n ordering,

zmin =
p̃2
⊥n

p2n,max

, for p̃2
⊥n ordering,

zmin =

√
Q2

had

ζn
, for ζn ordering.

(29)

This procedure generates a (µ2
n, zn) such that zn ∈

[zmin(µ
2
n), 1− zmin(µ

2
n)]. However, the kinematically al-

lowed phase space is more restrictive than this condition.
To overcome this difficulty, (µ2

n,trial, zn,trial) pairs sam-
pled according to this procedure which do not obey the
full kinematic restrictions are ignored and resampled,
starting from the the trial scale µ2

n,trial.

This procedure starts at some scale Q2
coll set by the

hard scattering, and continues until the available phase
space for parton splittings vanishes, near some hadroni-
sation scale Q2

had.

B. Results

Here, we present some results pertaining to the parton
showers we have implemented based on the previous sec-
tion. The hard scattering sets the upper bound for the
virtual mass of the first quark, Q2

coll = 1TeV2, and the
initial parton was given a momentum of |p| = pz,init =
10TeV, such that it is ultra-relativistic. The hadronisa-
tion scale is set at Q2

had = 1GeV2.
For the angular ordered shower, the initial variable

was limited at ζ0 = (pzπ)
2, effectively vetoing the up-

per bound on the first emission. For each prescription
106 events were generated according to the algorithms
described in the previous sections.

1. Kinematic Distributions

We start by looking at the distribution of the number
of emissions for each of the three prescriptions, depicted
in figure 9. Although all distributions are peaked at
Ng = 4, the angular and transverse momentum ordered
showers show a significant suppression of gluon emis-
sions. This is explained by noting that these prescrip-
tions implement coherence effects which are not fully
present in the virtuality ordering prescription.
To understand quark energy loss due to gluon radia-

tion, we look at the quark’s energy distributions before
splittings 2, 3, and 4, for an angular ordered shower,

per bound for the virtual mass of the first quark is set by the hard
scattering.
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FIG. 9: Number of emissions undergone by the quark for each
ordering prescription.

as depicted in figure 10. We find that all distributions
begin peaked at pz,init = 10TeV, flattening as one ad-
vances along the shower.
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FIG. 10: Energy distribution of quarks 2 — 4 (i.e. after
splittings 1 — 3).

2. The Lund Plane

The different behaviours of the ordering prescriptions
are best examined with recourse to the Lund plane [15,
16] distributions of each splitting. These are usually
given in the (ln(1/θ), ln(1/zE)) plane, where zE is the
gluon energy fraction with respect to the quark, and θ
is the angle between the daughters’ three momenta.

Besides this configuration, we explore the(
log10(τform), log10(π/θ)

)
plane, where τform corre-

sponds to the splitting formation time as given by the
third line of (8). In this configuration of the Lund plane
and for angular ordered showers, the distributions of
the first four splittings are shown in figure 11.

The Lund plane evolution of the angular ordered par-
ton cascades is characterised by a shift towards narrower
splitting angles, as a consequence of the coherence effects
described above, and towards larger values of τform, cor-
roborating the use of this variable as a splitting forma-
tion time.

In general, the other prescriptions show a similar (yet
not identical) trend in their evolution, differing in the
specifics of the initial distributions.
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FIG. 11: Lund plane in log10(τform) vs log10(π/θ) for the first
four emissions of a parton shower ordered according to splitting
angle.

To better examine the evolution of the Lund plane
distributions, we compute the mean value of each kine-
matic value, τform, and θ for each splitting, and show
the path traced over the Lund plane by each ordering
prescription in figure 12.
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On the other hand, figure 12 shows the trajectories
in the

(
log10(π/θ), log10(τform)

)
plane, evolving towards

narrower splitting angles and larger values of formation
time.

The general decrease of splitting angle once again em-
phasises the coherence effects observed throughout this
section and motivated by the angular ordering results
for a QCD antenna.

There is, however, significant variation between the
trajectories of different ordering prescriptions, highlight-

ing the need for theoretical control of the parton shower
kinematics, beyond DLA accuracy.

V. CONCLUSIONS

In this work, the characteristic timescales for QCD
emissions were studied, with the ultimate aim to imple-
ment a parton shower ordered according to the forma-
tion time of the parton splittings.

First, we have studied a new jet reclustering tool, the
τ algorithm, whose distance measure coincides with the
inverse splitting formation time τform in the soft limit.
This jet clustering algorithm is obtained by choosing
p = 1/2 for the generalised-kT distance measure, such
that it clusters jets in τ−1form To study the performance
of this novel jet reclustering algorithm, we use parton
showers with different ordering variables. When com-
pared to C/A algorithm, we found the τ algorithm to
provide jets better correlated with the parton shower
Monte Carlo truth. It also produced better estimates for
τform than C/A, although jet grooming proved essential
in this task. In the context of jet quenching studies, the
τ algorithm was found to produce jets with a first split-
ting formation time such that the late population does
not undergo significant modifications, unlike the C/A
algorithm, which systematically underestimates τform.

As these results show the importance of parton shower
ordered in formation time, an ordering thus far missing
from our study. To achieve this goal, we examined the
calculation of the amplitude for double gluon emission
from a quark, aiming to compute τform from an ana-
lytical expression and to verify factorisation into single
gluon emissions. This was done by writing the contri-
butions of all tree level diagrams in terms of their Dirac
and colour structure, and an eikonal factor. From this,
the characteristic timescales of each gluon emission were
identified, in the context of the diagonal terms in |M|2.
In the soft limit, these timescales were shown to coincide
with the definition of formation time used for heavy ion
studies in previous sections. Further, formation time or-
dering can recovered from the angular ordering prescrip-
tion in the soft limit, as given by pQCD calculations.
In examining the |M|2 contributions, the off-diagonal
terms were found to be either colour suppressed or pos-
sible to include as contributions to the diagonal terms,
which were shown to factorise into the splitting kernels
for successive gluon emissions, in the soft limit.

Finally, the working principles of a parton shower in
the DLA regime were explored for the three most com-
mon ordering variables namely virtuality, transverse mo-
mentum, and splitting angle. By implementing the ap-
propriate kinematic restrictions in all cases, the four-
momenta of all participating partons were reconstructed,
allowing for comparisons between prescriptions. Next,
the Lund plane distributions were studied for all three
prescriptions, where the variation between the ordering
prescriptions was observed, due to their dynamics and
starting configurations. This is also manifest in the tra-
jectories over the Lund planes, with significant differ-
ences in values τform which, while within DLA accuracy,
may prove crucial in heavy ion studies, due to the short
timescale for QGP evolution.
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